Skip to content
Back Home
  • About
    • The mission
    • Contacts
    • People who are involved
    • External Advisory Board
  • News
  • Events
    • 10th SmartData@PoliTO Workshop – Present and Future Directions
    • 9th SmartData@PoliTO Workshop – SmartData@PoliTO meets AI-H@PoliTO
    • La biblioteca nel metaverso – la Reading & Machine
  • Workshops
    • Seminars
      • AI4Industry – the role of AI and Data-driven Analysis in the Future of European Industry
      • On the dynamics of music virality and its relation with mainstream success
      • Bypass frauds in cellular networks: from Financial strikes to Data poisoning
    • SmartTalks
  • Education
    • Courses for PhD students
    • PhD Course: Topological Data Analysis
    • PhD Course: Data Science for Networks
    • Corporate training on Digital Transformation
  • Research
    • Publications
    • Current PhD
    • Projects
    • Open Datasets & Libraries
    • Topics
  • Open Positions
    • open position – PhD student
    • open position – Assistant Professor with time contract (RTD-A)
    • open position – PostDoc researchers
    • Open position – Technologist
  • BigData Cluster
    • Computing Facilities
    • Request BigData@Polito Account
    • BigData@Polito Access Instructions
    • Run Jobs with Custom Packages
  • Private Area
  • Search
Back Home
  • About
    • The mission
    • Contacts
    • People who are involved
    • External Advisory Board
  • News
  • Events
    • 10th SmartData@PoliTO Workshop – Present and Future Directions
    • 9th SmartData@PoliTO Workshop – SmartData@PoliTO meets AI-H@PoliTO
    • La biblioteca nel metaverso – la Reading & Machine
  • Workshops
    • Seminars
      • AI4Industry – the role of AI and Data-driven Analysis in the Future of European Industry
      • On the dynamics of music virality and its relation with mainstream success
      • Bypass frauds in cellular networks: from Financial strikes to Data poisoning
    • SmartTalks
  • Education
    • Courses for PhD students
    • PhD Course: Topological Data Analysis
    • PhD Course: Data Science for Networks
    • Corporate training on Digital Transformation
  • Research
    • Publications
    • Current PhD
    • Projects
    • Open Datasets & Libraries
    • Topics
  • Open Positions
    • open position – PhD student
    • open position – Assistant Professor with time contract (RTD-A)
    • open position – PostDoc researchers
    • Open position – Technologist
  • BigData Cluster
    • Computing Facilities
    • Request BigData@Polito Account
    • BigData@Polito Access Instructions
    • Run Jobs with Custom Packages
  • Private Area
Home » Publications » Completing and Predicting Internet Traffic Matrices Using Adversarial Autoencoders and Hidden Markov Models

Completing and Predicting Internet Traffic Matrices Using Adversarial Autoencoders and Hidden Markov Models

Alessio Sacco, Flavio Esposito, Guido Marchetto (2023) Completing and Predicting Internet Traffic Matrices Using Adversarial Autoencoders and Hidden Markov Models, In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, pp. 1-15, ISSN: 1932-4537

Post navigation

  • Previous post Gamification of Business Process Modeling Notation education: an experience report
  • Back to post list
  • Next post Inertial and geometrical effects of self-propelled elliptical Brownian particles

Collaborations

 

© 2025 SmartData@PoliTO – All rights reserved

Homepage - Privacy - Cookie Policy - Contacts