# DATI, AI E ROBOTICA @POLITO

RICERCA, TRASFERIMENTO TECNOLOGICO E SUPPORTO ALLE AZIENDE SUI TEMI FONDAMENTALI DEI BIG DATA, INTELLIGENZA ARTIFICIALE, ROBOTICA E RIVOLUZIONE DIGITALE



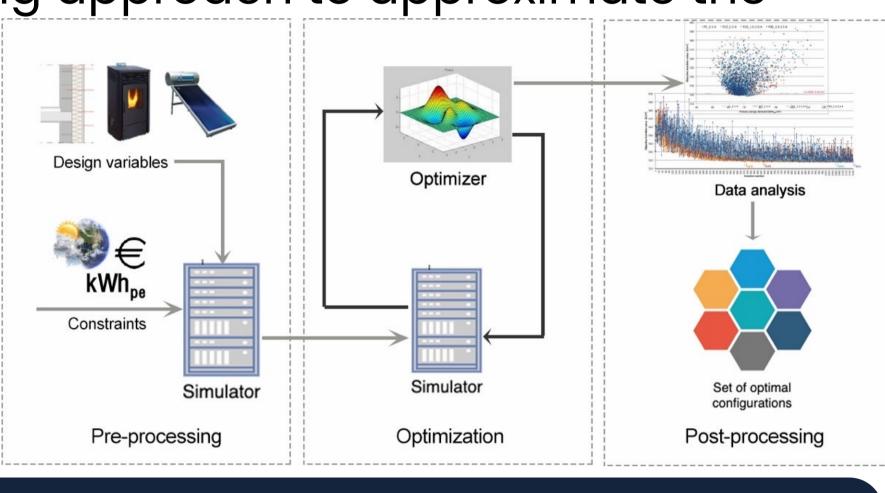
Maria Ferrara, Francesco Della Santa, Matteo Bilardo, Alessandro De Gregorio, Antonio Mastropietro, Ulderico Fugacci, Francesco Vaccarino, Enrico Fabrizio



### Motivation and background

The design of renewable energy systems for Nearly Zero Energy Buildings (NZEBs) is a complex optimization problem. Simulation-based optimization has proved to be able to support the the search of an optimal design, but the computation burden of simulations is very high, leading to slow, or inaccurate, solutions. We propose a deep residual learning approach to approximate the

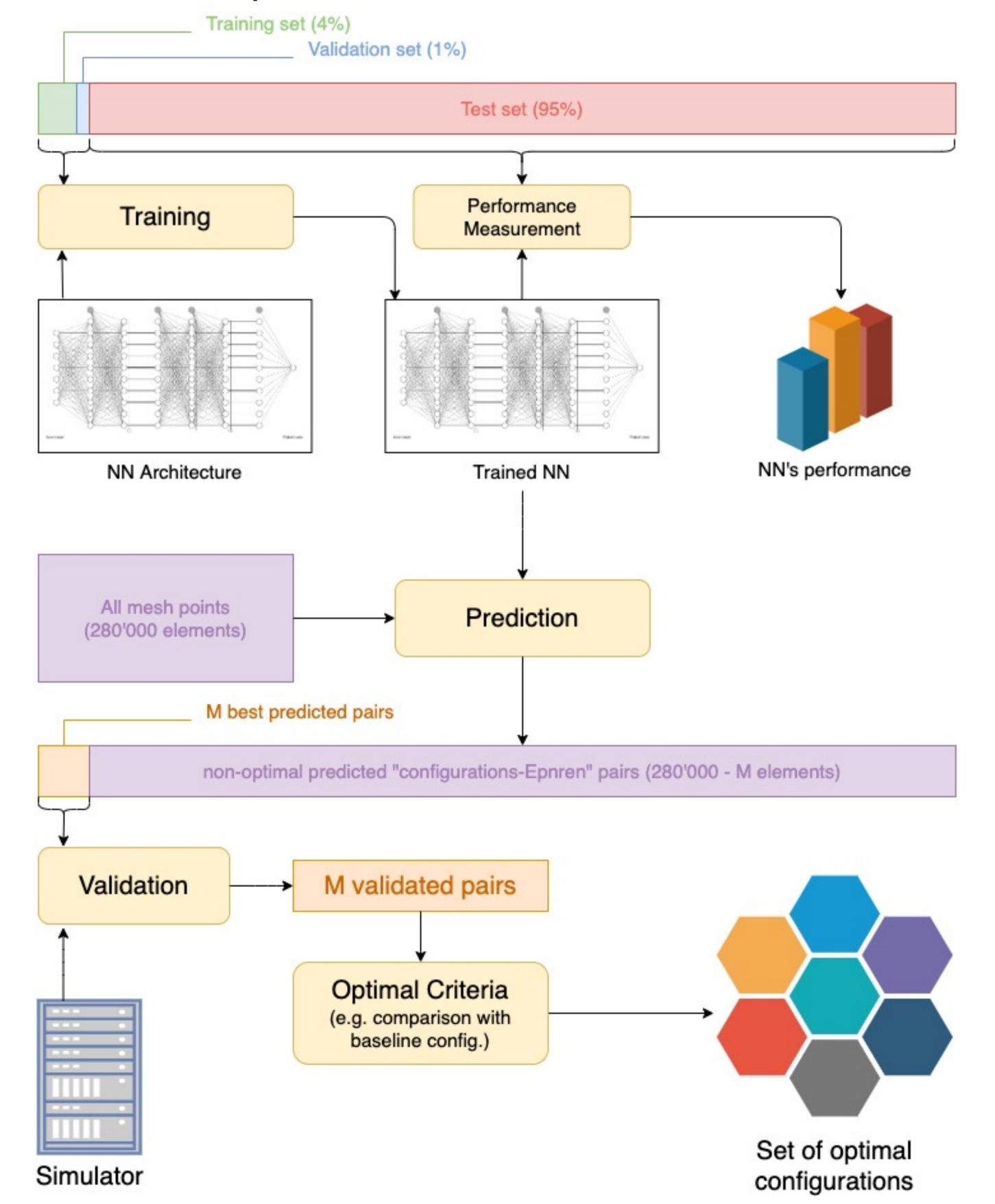
simulator, and use the learned function to solve the optimization problem.



## Proposed pipeline

| Variable description                                               | Name      | Unit               | Min      | Max      | Steps |
|--------------------------------------------------------------------|-----------|--------------------|----------|----------|-------|
| Number of solar collectors (Approx. total area of the solar field) | N_coll    | -(m <sup>2</sup> ) | 35 (150) | 70 (300) | 7     |
| Volume Ratio                                                       | HSt_ratio | $l/m^2$            | 40       | 110      | 7     |
| Cold storage volume                                                | CSt_vol   | $m^3$              | 4        | 10       | 6     |
| FlowRate_solar loop                                                | FR_sol    | kg/hr              | 8000     | 12000    | 4     |
| FlowRate_Hot Water loop                                            | FR_HW     | kg/hr              | 8000     | 12000    | 4     |
| FlowRate_Chilled Water loop                                        | FR_ChW    | kg/hr              | 8000     | 12000    | 4     |
| FlowRate_Cold Water loop                                           | FR_CW     | kg/hr              | 11200    | 16800    | 4     |

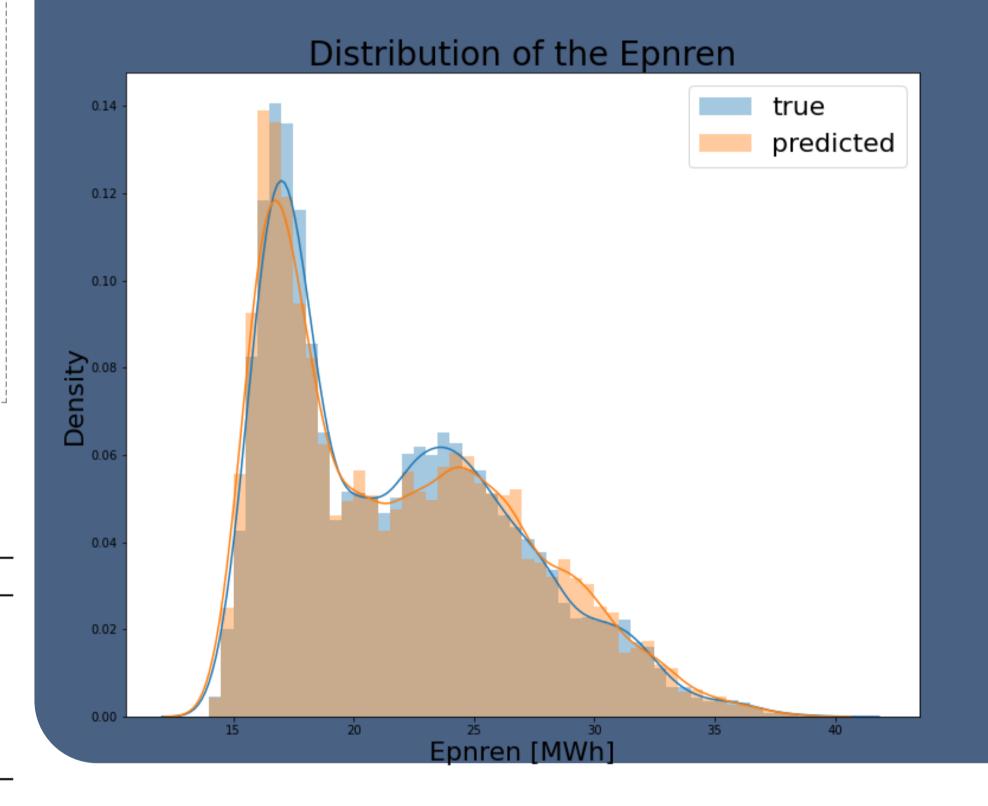
The simulator is evaluated on a number **P** of configurations. These are used to train a deep residual neural network. Once the DNN approximates with good quality the simulator, the best **M** configurations of the disign space are selected for further analysis.



#### Approximation of the simulator

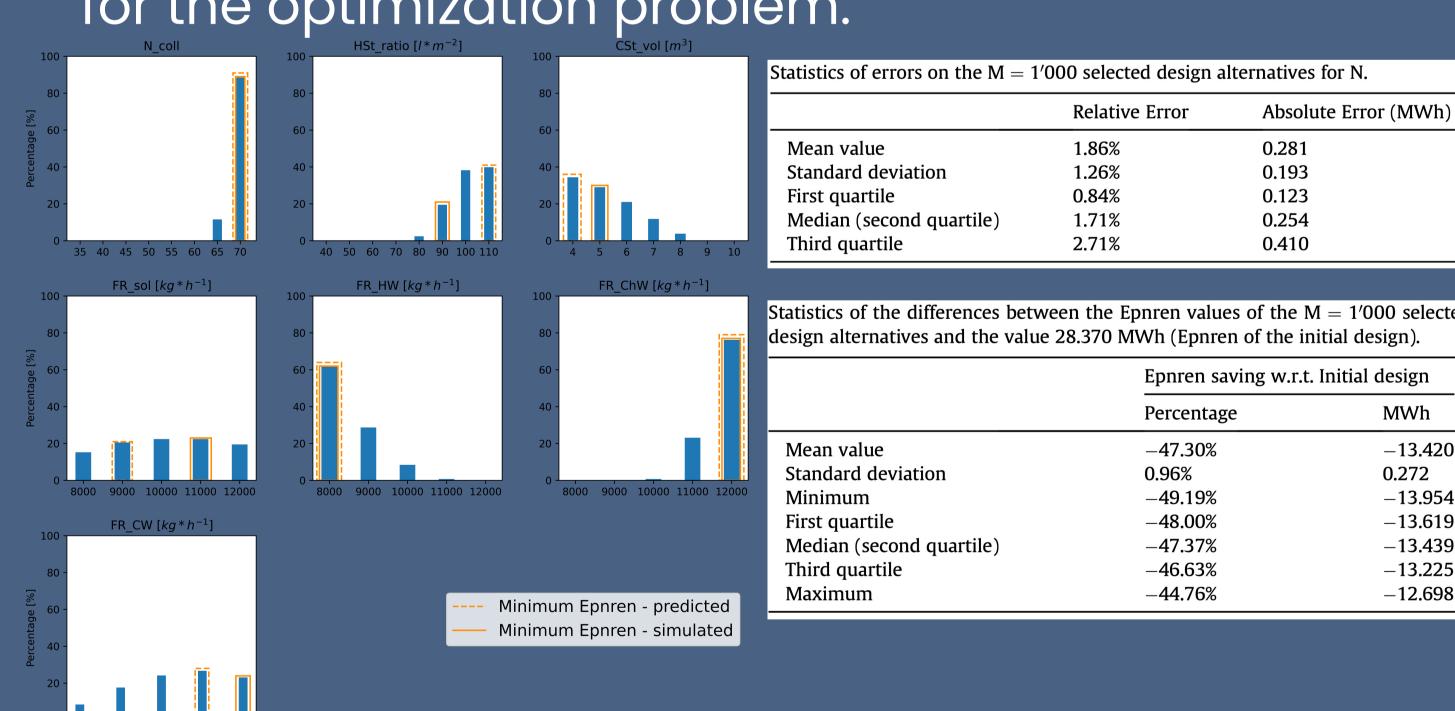
The proposed DNN achieves a good quality of prediction (r.e.~3%) using only the 0.4% of points of the design space for the training phase.

| Statistics of errors on the test set for N. |                |                      |  |  |
|---------------------------------------------|----------------|----------------------|--|--|
|                                             | Relative Error | Absolute Error (MWh) |  |  |
| Mean value                                  | 3.30%          | 0.740                |  |  |
| Standard deviation                          | 5.38%          | 1.206                |  |  |
| First quartile                              | 0.79%          | 0.159                |  |  |
| Median (second quartile)                    | 1.81%          | 0.379                |  |  |
| Third quartile                              | 3.63%          | 0.813                |  |  |



## Results of the optimization

It is possible to explore the entire design space and to analyze an arbitrary number of solutions for the optimization problem.



#### Conclusions and future work

The proposed method based on deep residual learning can

- Obtain a good quality of prediction, compared with the simulator;
- Speed up the optimization problem and increase the accuracy of the optimization;
- Increase the quality of the exploration of the design space;

Future work will be dedicated on different case studies of different levels of complexity, up to the case complete ZEB design problems.