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Federated Learning (FL) deals with learning a global
model M on the server - side in privacy - constrained
scenarios , where data are stored on edge devices,
i.e. the clients .
Standard algorithm for models' aggregation :
FedAvg .

1. Federated Clustering of
the local distributions, i.e.
domains . Based on
pseudo - labels predicted
by the teacher - student
domain classifiers .

Test time : new 
domains as a soft 
combination of the 
previously discovered 
ones.

2. Cluster - specific models :
domain specific
parameters added as
residuals in the model .

3. Graph - based interactions
among domain - specific
parameters .

In realistic scenarios, clients may hold different data
distributions, leading to poor performances of the
global model . Simply averaging the ̡̦̥̖̤̒̕Яweights
is not enough anymore .

Datasets statistics . Task: image classification. 40)

We propose FedCG , a new algorithm for addressing
statistical heterogeneity in FL,based on :
Áan iterative clustering algorithm used to identify

different data distributions and instantiate
domain - specific parameters .

ÁGraph Convolutional Neural Networks for
sharing knowledge across domains .

Á the possibility to address new distributions at
test time exploiting both the domain classifiers
and the connections of the graph .
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Ablation studies Experiments

How to deal with non - i.i.d . and unbalanced ̝̖̟̥̤̔̚Я
data?


