

RICERCA, TRASFERIMENTO TECNOLOGICO E SUPPORTO ALLE AZIENDE SUI TEMI FONDAMENTALI DEI BIG DATA, INTELLIGENZA ARTIFICIALE, ROBOTICA E RIVOLUZIONE DIGITALE

Cluster-driven Graph Federated Learning over Multiple Domains

D. Caldarola, M. Mancini, F. Galasso, M. Ciccone, E. Rodolà, B. Caputo

Federated Learning

Federated Learning (FL) deals with learning a global model *M* on the server-side in **privacy-constrained scenarios**, where data are stored on edge devices, i.e. the *clients*. Standard algorithm for models' aggregation: **FedAvg**.

FedCG

lobal **1. Federated Clustering** of

the local distributions, i.e. **domains**. Based on pseudo-labels predicted by the teacher-student domain classifiers. Test time: new

domains as a soft combination of the previously discovered ones.

- 2. Cluster-specific models: domain specific parameters added as residuals in the model.
- **3. Graph-based** interactions among domain-specific parameters.

★	\mathbf{d}_{1}	$\{d_4, d_5\}$	$\frac{\gamma d_1 + \delta d_5}{(}$

Statistical heterogeneity in FL

Results

In realistic scenarios, clients may hold different data distributions, leading to poor performances of the global model. Simply averaging the updates' weights is not enough anymore.

Datasets statistics. Task: image classification.

Dataset	Clients	Total samples	Samples	per client	Classes
			Mean	Stdev	•
CelebA	9,343	200,288	21.44	7.63	2
FEMNIST	3,550	805,263	226.83	88.94	62

Table 1: Datasets Statistics. Origin: LEAF benchmark.

Ablation studies					Experiments			
Model	A	W	ReLU	Acc(%)		Dataset	Model	Accuracy (%)
Domain-specific models	-	_	_	33.61		CelebA	FedAvg	86.88
GCN	II	X	X	84 39		FEMNIST	FedCG	89.18
				07.57			FedAvg	77.81
		X	X	82.10			FedCG	83.41
0011	U	\checkmark	X	87.92			FedProx	75.00
	H	\checkmark	X	84.25			SCAFFOLD	
	U	\checkmark	X	86.96				
FedCG	H	\checkmark	×	88.65				
	U	\checkmark	\checkmark	87.97				
	H	1	\checkmark	89.57				

Conclusions

How to deal with **non-i.i.d.** and **unbalanced** clients' data?

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." *Artificial intelligence and statistics*. *PMLR*, 2017.

Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." *ICLR* (2016).

Caldas, Sebastian, et al. "Leaf: A benchmark for federated settings." *arXiv preprint arXiv:1812.01097* (2018).

We propose *FedCG*, a new algorithm for addressing **statistical heterogeneity** in FL, based on:

- an iterative clustering algorithm used to identify different data distributions and instantiate domain-specific parameters.
- Graph Convolutional Neural Networks for sharing knowledge across domains.
- the possibility to address new distributions at test time exploiting both the domain classifiers and the connections of the graph.

