

Web Privacy in the Age of Big Data

Martino Trevisan SmartData@PoliTO Workshop 30 Jan 2020 Outline

What is still visible to the network?

Can we hide our identity?

Can we hide the websites we visit?

What is still visible to the network?

Network Monitoring

- Observe (and understand) traffic that flows in the network
 - And eventually take actions: route / block / account
- Performed by:
 - Routers > Traffic management, accounting...
 - Firewalls > Security
 - Network Probes > Knowledge Extraction, troubleshooting

Privacy is a must!

Personal Information travels in the network Users want privacy

Traffic is going encrypted to prevent the network from eavesdropping users' traffic

The history of encryption

The trend is from less encryption to more encryption Three chapters of the history:

- Until ≈ 2010: **No encryption** -> Everything was visible
 - The URLs you visit
 - Your emails and social messages
 - Your Credit Card Number
- ≈ 2010 2019: Deployment of **HTTPS**: Payload is encrypted
 - Only the name of the website is visible
 - Through DNS and HTTPS non-encrypted headers
- From 2020: Signalling (e.g., DNS) is encrypted
 - No information at all
 - Except for the server address (cannot encrypt!)

Linked in dug flick

facebook

amazon.com Expedia

Can big data break your privacy?

With Big Data, an attacker can:

- Collect and process large datasets of network traffic
- Train ML models on big data
- Use these models to break users' privacy
 - Identify users changing their identifiers
 - Unveil the visited websites even under encryption

«Faccio l'accento svedese?»

Can we hide our identity?

Scenario

POLITECNICO DI TORINO

Fingerprint similarity computation

Create **profiles** for users:

• A profile is the **set** of contacted **websites**

Hypothesis: users stay similar (correlation between different time windows)!

Goal: correctly identify a user among the profiles built in the past

Challenge: compute a suitable similarity metric
Three methodologies for similarity among sets
1. JACCARD INDEX
2. MAXIMUM LIKELIHOOD ESTIMATION
3. COSINE SIMILARITY BASED ON TF-IDF

POLITECNICO DI TORINO

Core / support domains

Websites (domain names) can be naturally divided in two types

Core domains www.nytimes.com www.repubblica.com twitter.com www.lastampa.it www.youtube.com Support domains static01.nyt.com abs.twimg.com upload.wikimedia.org cdns.gigya.com gstatic.com

We use a simple tree-based model to automaticallty identify them

We create profiles **separately** for core and support domains

Goal: what works better for re-identification?

- What we access intentionally?
- The "background noise" generated by our devices?

Experimental setup

Log Size

229 GB

Dataset from a University campus Users with fixed IP addresses -> we get a ground truth

Volume

113 TB

Load and process the logs using Apache Spark in a 20-machine Hadoc
cluster

Client IPs

 ≈ 2500

Domains

404 k

2nd-lvl

136 k

- Reading and processing the Campus dataset in about 20 minutes.
- 1 hour for classifying 404 k domains as Core or Support domains.

р

Identification accuracy

Results separate for Core and Support domains

Core domains (websites) are more important than Support domains (CDN domains, background apps, etc.)

- Jaccard performs worst in all the cases
- TFIDF has the best results
 in most of the experiments,
 but
- MLE performs a slightly better with Core domains.

The larger is the data, the better is the identification Accuracy Up to **85% (on 2 k users)**

We are repetitive. An attacker with a big dataset can us this to re-identify us!

Can we hide the websites we visit?

Question: can we use ML to understand the website of an encrypted connection

Scenario

Scenario: Signalling protocols are encypted (third scenario)

- DNS is encrypted over HTTPS
- HTTPS uses the Encrypted server name indication (eSNI)
- The network cannot associate a website to a flow

Less than 2% of clients already updated

Before: Non-encrypted signaling

Now (close future): Encrypted signaling

Experimental setup

Use a dataset from a University Campus

- Flow records for 1 month
- 3,900 users
- 900 M contacted websites Encrypted signalling used by 2% of users
- > We have the ground truth for all the dataset (= we have the website for each TCP/UDP flow)

We assume that the attacker:

- Has the ground truth for 50% of clients
 Because be controls a DNS server or
 - Because he controls a DNS server, or creates a testbed

Wants to classify the remaining traffic

 Associate a TCP/UDP flow to the corresponding website Training

Testing

Machine Learning Methodology

On the Internet, the set of networks owned by the same body are called **«Autonomous Systems»** Google, Facebook, Microsoft, Amazon have their AS

The IP addresses associated to an AS are public

We split our classification problem in many subproblems

Features extracted from flow characteristics

- Packet size
- Timing
- TCP level flags
- More than 100

19

Does it work?

We consider 1 month of traffic 3900 users

- 50% training
- 50% testing

Try different off-the-shielf classification algorithms Use Spark more most of processing Focus on 9 ASes of top-Internet players

- Consider only cloud providers (e.g., Amazon)
- Google, Facebook would be too easy ☺

Goal:

associate the website to TCP/UDP flows

Results:

80% of domains can be classified with F1-Score > 0.8

• On 280 most popular websites

Random Forest the best classification algo Most impacting factor: **dataset size**

 The more you observe a website during training, the better you classify it at testing time

Conclusion

The Privacy trade-off

- Network monitoring is useful for cybersecurity, traffic engineering
- Users want privacy

Currently, users' privacy is triumphing – driven by content providers

Everything is going encrypted

Encryption is not a miracle cure

- Also attackers can play with Big Data and ML
- Large datasets allow to:
 - Re-identify users based on their website visits
 - Identify websites behind encrypted connections

Perguntas Fragen DomandeGaldera Otázky Otazky OuestionS Spørgsmål Pertanyaan kysymykset Frågor Spørsmål Cwestiynau вопросыPreguntes Sorular Въпроси Vragen Pytania