
PersLay: a Neural Network for persistence diagrams

6th SmartData@Polito Workshop

Jan. 30th, 2020.

DataShape - Inria Saclay
theo.lacombe@inria.fr

and related topics.

Higher Methods in Data Science and ML

M. Carrière, F. Chazal, Y. Ike, T. Lacombe,
M. Royer, Y. Umeda



Preliminar ideas about TDA



Preliminar ideas about TDA



Preliminar ideas about TDA

TDA is about:
• Providing topological descriptors

of a given object

• In a quantitative way.



Preliminar ideas about TDA

TDA is about:
• Providing topological descriptors

of a given object

• In a quantitative way.



A global overview of TDA

TDA can be applied to any type of structured data.

e.g. Point clouds in Rd, Weighted graphs, time series...



The TDA pipeline: persistent homology

Reminder:
We want to encode the topology of an object at all scales



The TDA pipeline: persistent homology

Reminder:
We want to encode the topology of an object at all scales

Homology:
Encodes the topological features (connected components, loop, holes...)



The TDA pipeline: persistent homology

Reminder:
We want to encode the topology of an object at all scales

Homology:
Encodes the topological features (connected components, loop, holes...)

β0 = 1 connected component
β1 = 2 loops
β2 = 1 hole



The TDA pipeline: persistent homology

Reminder:
We want to encode the topology of an object at all scales

Homology:
Encodes the topological features (connected components, loop, holes...)

Simplicial homology:
Homology on a computer.

β0 = 1 connected component
β1 = 2 loops
β2 = 1 hole



The TDA pipeline: persistent homology

All we need is an increasing sequence of topological spaces.

Reminder:
We want to encode the topology of an object at all scales

Example: Given a function f : X→ R, consider Ft := f−1((−∞, t])

filtration sublevel sets of f

Persistence: looking at scales

x ∈ Ft ⇔ f(x) ≤ t



The TDA pipeline: persistent homology

All we need is an increasing sequence of topological spaces.

Reminder:
We want to encode the topology of an object at all scales

Example: Given a function f : X→ R, consider Ft := f−1((−∞, t])

Example: Given X = x1 . . . xn ∈ Rd =: X, take f(x) = distX(x)

filtration sublevel sets of f

Persistence: looking at scales

x ∈ Ft ⇔ f(x) ≤ t



The TDA pipeline: persistent homology

All we need is an increasing sequence of topological spaces.

Reminder:
We want to encode the topology of an object at all scales

Example: Given a function f : X→ R, consider Ft := f−1((−∞, t])

Example: Given X = x1 . . . xn ∈ Rd =: X, take f(x) = distX(x)

filtration sublevel sets of f

Persistence: looking at scales

x ∈ Ft ⇔ f(x) ≤ t



The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space

• Record births and deaths of topological features (loop, holes, etc.)

births

d
ea

th
s

• Print the output as the persistence diagram of the filtration

t = 0

Diagram in dim 1 (loops)

t

t

0



The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space

• Record births and deaths of topological features (loop, holes, etc.)

births

d
ea

th
s

• Print the output as the persistence diagram of the filtration

Diagram in dim 1 (loops)

t = 1
t

t

0 1



The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space

• Record births and deaths of topological features (loop, holes, etc.)

births

d
ea

th
s

• Print the output as the persistence diagram of the filtration

t = 1.5

Diagram in dim 1 (loops)

t

t

0 1



The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space

• Record births and deaths of topological features (loop, holes, etc.)

births

d
ea

th
s

• Print the output as the persistence diagram of the filtration

t = 2

Diagram in dim 1 (loops)

t

t

0 1

2

2



The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space

• Record births and deaths of topological features (loop, holes, etc.)

births

d
ea

th
s

• Print the output as the persistence diagram of the filtration

t = 3

Diagram in dim 1 (loops)

t

t

0 1

2

2

3



The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space

• Record births and deaths of topological features (loop, holes, etc.)

births

d
ea

th
s

• Print the output as the persistence diagram of the filtration

t = 5

Diagram in dim 1 (loops)

t

t

0 1

2

2

3

5



The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space

• Record births and deaths of topological features (loop, holes, etc.)

births

d
ea

th
s

• Print the output as the persistence diagram of the filtration

Diagram in dim 1 (loops)

t

t

0



The TDA pipeline: persistent homology

Input item + filtration f

Sequence of increasing topo. spaces

Persistence diagram

Summary:



The TDA pipeline: persistent homology

Input item + filtration f

Sequence of increasing topo. spaces

Persistence diagram

Summary:



Persistence Diagrams as topological features

Given (X1 . . . Xn), consider (µ1 . . . µn) their resp. diagrams.



Persistence Diagrams as topological features

Given (X1 . . . Xn), consider (µ1 . . . µn) their resp. diagrams.

• Can we use the (µi)is as inputs in a ML task?

→ You can compare PDs with a metric dp (theoretically motivated)

→ PDs are “point clouds” with (possibly) different cardinalities



Persistence Diagrams as topological features

Given (X1 . . . Xn), consider (µ1 . . . µn) their resp. diagrams.

• Can we use the (µi)is as inputs in a ML task?

→ You can compare PDs with a metric dp (theoretically motivated)

Pbm: The space of PDs equipped with dp is ill-structured

no addition

no scalar multiplication

hard to define mean/barycenter

→ PDs are “point clouds” with (possibly) different cardinalities



Persistence Diagrams as topological features

Given (X1 . . . Xn), consider (µ1 . . . µn) their resp. diagrams.

• Can we use the (µi)is as inputs in a ML task?

→ You can compare PDs with a metric dp (theoretically motivated)

Pbm: The space of PDs equipped with dp is ill-structured

no addition

no scalar multiplication

hard to define mean/barycenter

Idea: Embed PDs into linear spaces via
a feature map Φ

→ PDs are “point clouds” with (possibly) different cardinalities



Persistence Diagrams as topological features

• Two principal approaches: finite dim vectorization
or infinite dim ones (kernels)



Persistence Diagrams as topological features

• Two principal approaches: finite dim vectorization
or infinite dim ones (kernels)

Do not scale well on large sets of large diagrams



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

ρµ(·) =
∑
p∈µ

wt(p) · exp

(
−‖ · −p‖

2

2σ2

)

weight function: wt((x, y)) = 1

t
y



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

For each pixel P , compute I(P ) =
∫∫
P
ρµ

Concatenate all I(P ) into a single vector PI(µ) (2D image)

Discretize plane into grid of pixels:



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

Prop: [Adams et al. 2017] (stability)

• ‖PI(µ)− PI(ν)‖2 ≤
√
dC(w, φp) d1(µ, ν)



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

Observations: Depends on hyperparams (grid size)

but also trainable params (σ, wt...)



Persistence Diagrams as topological features

Rotate PD

Compute rank function

Use boundaries
of rank function

Persistence Landscape [Bubenik 2015]



Persistence Diagrams as topological features

Observation: These vectorizations are of the form

Φ(µ) = op{φθ(p), p ∈ µ}

Where θ is a set of trainable parameters, and φθ : R2 → Rd.

Why?

where op =
∑
,max, top− k, etc.



Persistence Diagrams as topological features

Observation: These vectorizations are of the form

Φ(µ) = op{φθ(p), p ∈ µ}

Where θ is a set of trainable parameters, and φθ : R2 → Rd.

Why?

Idea: Say a PD is a point cloud µ = {p1 . . . pn} ⊂ R2.

We want a function Φ that is permutation invariant

where op =
∑
,max, top− k, etc.

Φ(p1 . . . pn) = Φ(pπ(1) . . . pπ(n))

for any permutation π ∈ Sn



Deep Sets [Zaheer et al. 2017]

Question: What are the permutation invariant functions?



Deep Sets [Zaheer et al. 2017]

[Zaheer et al. 2017] Φ is permutation invariant iff ∃ρ, φ s.t.:

Φ({p1 . . . pn}) = ρ

(
n∑
i=1

φ(pi)

)
,

Question: What are the permutation invariant functions?

provided (pi) ⊂ K compact (or countable).



Reminder: Neural networks

Rd0
Rd1

Rdn

Rdn+1

In
p

u
t

O
u

tp
u

tf
(0)
θ0

f
(1)
θ1

f
(n−1)
θn−1

f
(n)
θn· · ·

NN with depth n ∈ N∗
x
i

la
b

el
y i



Reminder: Neural networks

Rd0
Rd1

Rdn

Rdn+1

In
p

u
t

O
u

tp
u

tf
(0)
θ0

f
(1)
θ1

f
(n−1)
θn−1

f
(n)
θn· · ·

NN with depth n ∈ N∗

Final predictor: Fθ = f
(n)
θn
◦ · · · ◦ f (0)

θ0

Goal: Minimize `(θ) =
∑
i ‖Fθ(xi)− yi‖22 w.r.t. θ

x
i

la
b

el
y i



Reminder: Neural networks

Rd0
Rd1

Rdn

Rdn+1

In
p

u
t

O
u

tp
u

tf
(0)
θ0

f
(1)
θ1

f
(n−1)
θn−1

f
(n)
θn· · ·

NN with depth n ∈ N∗

Final predictor: Fθ = f
(n)
θn
◦ · · · ◦ f (0)

θ0

Goal: Minimize `(θ) =
∑
i ‖Fθ(xi)− yi‖22 w.r.t. θ

Requirement: Know ∇f (i)
θi

for each i. ⇒ chain rule.

x
i

la
b

el
y i



Reminder: Neural networks

Rd0
Rd1

Rdn

Rdn+1

In
p

u
t

O
u

tp
u

tf
(0)
θ0

f
(1)
θ1

f
(n−1)
θn−1

f
(n)
θn· · ·

NN with depth n ∈ N∗

Final predictor: Fθ = f
(n)
θn
◦ · · · ◦ f (0)

θ0

Goal: Minimize `(θ) =
∑
i ‖Fθ(xi)− yi‖22 w.r.t. θ

Requirement: Know ∇f (i)
θi

for each i. ⇒ chain rule.

Observation: If f
(0)
θ0

is perm. inv., so is the NN.

x
i

la
b

el
y i



Application to persistence diagrams

Permutation invariant layers generalize several TDA approaches

→ persistence lanscapes → silhouettes → Betti curves



Application to persistence diagrams

Permutation invariant layers generalize several TDA approaches

→ persistence lanscapes → silhouettes → Betti curves

Weight function
Point transformation

PersLay(µ) = ρ (op{w(p) · φ(p)}p∈µ)

Permutation-invariant
operation



Application to persistence diagrams

Permutation invariant layers generalize several TDA approaches

→ persistence lanscapes → silhouettes → Betti curves

Weight function
Point transformation

PersLay(µ) = ρ (op{w(p) · φ(p)}p∈µ)

Permutation-invariant
operation

Our contribution: Implementing (and sharing) it.



Application to persistence diagrams

features

w(·)φ(·) op

op

op
ρ

w(·)φ(·)

w(·)φ(·)

opw(·)φ(·)

data



Application to persistence diagrams

Goal: classify orbits of linked twisted map

Orbits described by (depending on parameter r):{
xn+1 = xn + r yn(1− yn) mod 1

yn+1 = yn + r xn+1(1− xn+1) mod 1

Label = 2

Label = 1 Label = 5

Label = 4Label = 3

(flow dynamics)



Application to persistence diagrams

Goal: classify orbits of linked twisted map

Label = 2

Label = 1 Label = 5

Label = 4Label = 3

(flow dynamics)



Take home messages

• Topological Data Analysis builds topological summary

of a given object: the persistence diagram.

• PDs are not straightforward to use in ML pipelines

• A workaround is to vectorize our PDs, adaptatively
to a given learning task (e.g. classification).

• The “Deep Sets” architecture can be used to incorporate PDs
in NN architecture while encompassing existing vectorizations.



Take home messages

• Topological Data Analysis builds topological summary

of a given object: the persistence diagram.

• PDs are not straightforward to use in ML pipelines

• A workaround is to vectorize our PDs, adaptatively
to a given learning task (e.g. classification).

Supplementary material

• https://github.com/MathieuCarriere/perslay
→ soon integrated to the Gudhi library (hopefully).

• The “Deep Sets” architecture can be used to incorporate PDs
in NN architecture while encompassing existing vectorizations.

• PersLay: A Neural Network Layer for Persistence Diagrams
and New Graph Topological Signatures, AISTATS 2020


