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A global overview of TDA

TDA can be applied to any type of structured data.

e.g. Point clouds in Rd, Weighted graphs, time series...
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The TDA pipeline: persistent homology

Reminder:
We want to encode the topology of an object at all scales

Homology:
Encodes the topological features (connected components, loop, holes...)

Simplicial homology:
Homology on a computer.

β0 = 1 connected component
β1 = 2 loops
β2 = 1 hole
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All we need is an increasing sequence of topological spaces.
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The TDA pipeline: persistent homology

• Compute at all scale the homology of the current topological space
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• Compute at all scale the homology of the current topological space
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Persistence Diagrams as topological features

Given (X1 . . . Xn), consider (µ1 . . . µn) their resp. diagrams.

• Can we use the (µi)is as inputs in a ML task?

→ You can compare PDs with a metric dp (theoretically motivated)

Pbm: The space of PDs equipped with dp is ill-structured

no addition

no scalar multiplication

hard to define mean/barycenter

Idea: Embed PDs into linear spaces via
a feature map Φ

→ PDs are “point clouds” with (possibly) different cardinalities
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• Two principal approaches: finite dim vectorization
or infinite dim ones (kernels)



Persistence Diagrams as topological features

• Two principal approaches: finite dim vectorization
or infinite dim ones (kernels)

Do not scale well on large sets of large diagrams
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Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

ρµ(·) =
∑
p∈µ

wt(p) · exp

(
−‖ · −p‖

2

2σ2

)

weight function: wt((x, y)) = 1

t
y



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

For each pixel P , compute I(P ) =
∫∫
P
ρµ

Concatenate all I(P ) into a single vector PI(µ) (2D image)

Discretize plane into grid of pixels:



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

Prop: [Adams et al. 2017] (stability)

• ‖PI(µ)− PI(ν)‖2 ≤
√
dC(w, φp) d1(µ, ν)



Persistence Diagrams as topological features

Persistence Images [Adams et al. 2017]

Compute PD Rotate PD Compute persistence
surface

Discretize

Observations: Depends on hyperparams (grid size)

but also trainable params (σ, wt...)



Persistence Diagrams as topological features

Rotate PD

Compute rank function

Use boundaries
of rank function

Persistence Landscape [Bubenik 2015]



Persistence Diagrams as topological features

Observation: These vectorizations are of the form

Φ(µ) = op{φθ(p), p ∈ µ}

Where θ is a set of trainable parameters, and φθ : R2 → Rd.

Why?

where op =
∑
,max, top− k, etc.



Persistence Diagrams as topological features

Observation: These vectorizations are of the form

Φ(µ) = op{φθ(p), p ∈ µ}

Where θ is a set of trainable parameters, and φθ : R2 → Rd.

Why?

Idea: Say a PD is a point cloud µ = {p1 . . . pn} ⊂ R2.

We want a function Φ that is permutation invariant

where op =
∑
,max, top− k, etc.

Φ(p1 . . . pn) = Φ(pπ(1) . . . pπ(n))

for any permutation π ∈ Sn



Deep Sets [Zaheer et al. 2017]

Question: What are the permutation invariant functions?



Deep Sets [Zaheer et al. 2017]

[Zaheer et al. 2017] Φ is permutation invariant iff ∃ρ, φ s.t.:

Φ({p1 . . . pn}) = ρ

(
n∑
i=1

φ(pi)

)
,

Question: What are the permutation invariant functions?

provided (pi) ⊂ K compact (or countable).
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θi

for each i. ⇒ chain rule.
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Application to persistence diagrams

Permutation invariant layers generalize several TDA approaches

→ persistence lanscapes → silhouettes → Betti curves

Weight function
Point transformation

PersLay(µ) = ρ (op{w(p) · φ(p)}p∈µ)

Permutation-invariant
operation

Our contribution: Implementing (and sharing) it.



Application to persistence diagrams

features

w(·)φ(·) op

op

op
ρ

w(·)φ(·)

w(·)φ(·)

opw(·)φ(·)

data



Application to persistence diagrams

Goal: classify orbits of linked twisted map

Orbits described by (depending on parameter r):{
xn+1 = xn + r yn(1− yn) mod 1

yn+1 = yn + r xn+1(1− xn+1) mod 1

Label = 2

Label = 1 Label = 5

Label = 4Label = 3

(flow dynamics)



Application to persistence diagrams

Goal: classify orbits of linked twisted map

Label = 2

Label = 1 Label = 5

Label = 4Label = 3

(flow dynamics)



Take home messages

• Topological Data Analysis builds topological summary

of a given object: the persistence diagram.

• PDs are not straightforward to use in ML pipelines

• A workaround is to vectorize our PDs, adaptatively
to a given learning task (e.g. classification).

• The “Deep Sets” architecture can be used to incorporate PDs
in NN architecture while encompassing existing vectorizations.



Take home messages

• Topological Data Analysis builds topological summary

of a given object: the persistence diagram.

• PDs are not straightforward to use in ML pipelines

• A workaround is to vectorize our PDs, adaptatively
to a given learning task (e.g. classification).

Supplementary material

• https://github.com/MathieuCarriere/perslay
→ soon integrated to the Gudhi library (hopefully).

• The “Deep Sets” architecture can be used to incorporate PDs
in NN architecture while encompassing existing vectorizations.

• PersLay: A Neural Network Layer for Persistence Diagrams
and New Graph Topological Signatures, AISTATS 2020


