On the encoding of large, high-dimensional and unorganized datasets

Ulderico Fugacci

30 January 2020
Motivation

Topological Data Analysis (TDA) and Persistent Homology (PH) allow for extracting the core topological information from large, high-dimensional and unorganized datasets.

E.g. point clouds, complex networks, (semi-)metric spaces
Topological Data Analysis (TDA) and Persistent Homology (PH) allow for extracting the core topological information from *large, high-dimensional* and *unorganized datasets*. E.g. *point clouds, complex networks, (semi-)metric spaces*.
Motivation

Simplicial Complex:
A family K of subsets (called *simplices*) of a finite set V
closed under the operation of taking subsets

$0-, 1-, 2-, 3-$ simplices
Motivation

Simplicial Complex:
A family K of subsets (called *simplices*) of a finite set V closed under the operation of taking subsets

Issue:

V a point cloud with $|V| \geq 30$

Filtered complex K associated with V consists of more than a *billion* of simplices
Motivation

Simplicial Complex:
A family K of subsets (called *simplices*) of a finite set V closed under the operation of taking subsets.

Solution:
Development of *compact and efficient data structures* for encoding simplicial complexes.
Motivation

Outline:

• Which info to be stored?

• Data structures:
 • Simplex-based representations
 • Top-based representations
 • Operator-driven representations

• Issues and solutions in adopting top-based representations

• Comparisons
Motivation

Out of Scope:

• Data structures for specific classes of complexes
 • E.g., manifolds or complexes of low dimension
• Hierarchical and multi-resolution models
• Construction of a simplicial complex from a dataset
Data Structures for Simplicial Complexes

The entities which a simplicial complex consists of are:

- its simplices
 \[K = K_0 \cup K_1 \cup \ldots \cup K_d \]

 where \(K_i \) is the collection of the \(i \)-simplices of \(K \)

- the topological relations
 \[R_{i,j} \subseteq K_i \times K_j \]

 between the simplices of \(K \) encoding the (co-)boundary of each simplex
Data Structures for Simplicial Complexes

Data structure:

The *entities* which a simplicial complex consists of are:

- its *simplices*
 \[K = K_0 \cup K_1 \cup \ldots \cup K_d \]
 where \(K_i \) is the collection of the i-simplices of \(K \)

- the *topological relations*
 \[R_{i,j} \subseteq K_i \times K_j \]
 between the simplices of \(K \) encoding the (co-)boundary of each simplex

A *data structure* for \(K \) has to explicitly *store* a portion of the above information and to (efficiently) *retrieve* the remaining part
Data Structures for Simplicial Complexes

Topological Relations:

Given a i-simplex σ and a j-simplex τ of K,

$$ (\sigma, \tau) \in R_{i,j} $$

$$ \begin{cases}
\sigma \subseteq \tau & \text{for } i < j \\
| \sigma \cap \tau | = i \quad (\text{equivalently, } \sigma \cap \tau \in K_{i-1}) & \text{for } i = j \\
\tau \subseteq \sigma & \text{for } i > j
\end{cases} $$

Example:

$$ (12, 123) \in R_{1,2} \quad (12, 24) \in R_{1,1} \quad (12, 1) \in R_{1,0} $$
Data Structures for Simplicial Complexes

Topological Relations:

Given an i-simplex \(\sigma \) and a j-simplex \(\tau \) of \(K \),

\[
(\sigma, \tau) \in R_{i,j}
\]

\[
\begin{align*}
\sigma &\subseteq \tau & \text{for } i < j \\
|\sigma \cap \tau| & = i \text{ (equivalently, } \sigma \cap \tau \in K_{i-1}) & \text{for } i = j \\
\tau &\subseteq \sigma & \text{for } i > j
\end{align*}
\]

Example:

\[
(12, 123) \in R_{1,2} \quad (12, 24) \in R_{1,1} \quad (12, 1) \in R_{1,0}
\]

An i-simplex \(\sigma \) is called a **top simplex** of \(K \) if \(R_{i,i+1} \) is empty.
Data Structures for Simplicial Complexes

Data structures:

- Store all the entities
- Store only the top-simplices

- **Simplex-based** representations
- **Top-based** representations
- **Operator-driven** representations
Data Structures for Simplicial Complexes

Data structures:

- **Store all the entities**
 - Incidence Graph

- **Operator-driven representations**

- **Simplex-based representations**

- **Top-based representations**

Store only the top-simplices
Data Structures for Simplicial Complexes

Data structures:

- Store all the entities
- Incidence Graph
- Simplex Tree

Efficiency

Compactness

- Simplex-based representations
- Top-based representations
- Operator-driven representations

Store only the top-simplices
Data Structures for Simplicial Complexes

Data structures:
- Store all the entities
- Incidence Graph
- Simplex Tree
- IA* Data Structure

Efficiency

Compactness

Simplex-based representations
Top-based representations
Operator-driven representations

Store only the top-simplices
Data Structures for Simplicial Complexes

- **Data structures:**
 - Store all the entities: Incidence Graph, Simplex Tree
 - Store only the top-simplices: IA* Data Structure, Stellar Tree

- **Representations:**
 - Simplex-based representations
 - Top-based representations
 - Operator-driven representations
Data Structures for Simplicial Complexes

Data structures:

- Store all the entities
- Incidence Graph
- Simplex Tree
- IA* Data Structure
- Stellar Tree
- Skeleton Blocker
- Store only the top-simplices

- **Simplex-based** representations
- **Top-based** representations
- **Operator-driven** representations
Simplex-based Representations

The simplicial complex K is encoded via a directed graph $G = (N, A)$:

All the relations between simplices can be immediately retrieved

The representation \textit{size exponentially increases} with the complex dimension
Simplex-based Representations

The simplicial complex K is encoded via a directed graph $G = (N, A)$:

$$N \leftrightarrow K$$

$$(\sigma, \tau) \in A \iff (\sigma, \tau) \in R_{i,i+1} \text{ and } I(\sigma) < I(\tau)$$

where $I(\sigma)$ denotes the maximum value taken by the vertices of σ w.r.t. a total order on K_0

Graph is not uniquely determined but it depends on the chosen vertex order
Simplex-based Representations

The simplicial complex K is encoded via a directed graph $G = (N, A)$:

- $N \leftrightarrow K$
- $(\sigma, \tau) \in A \leftrightarrow (\sigma, \tau) \in R_{i,i+1}$ and $I(\sigma) < I(\tau)$

where $I(\sigma)$ denotes the maximum value taken by the vertices of σ w.r.t. a total order on K_0

Graph is *not uniquely determined* but it depends on the chosen vertex order
Top-based Representations

The simplicial complex K is encoded via a directed graph $G = (N, A)$:

- $N \leftrightarrow K_0 \cup K_{top}$
- $(\sigma, \tau) \in A \leftrightarrow \begin{cases} \sigma \in K_{top} \text{ and } (\sigma, \tau) \in R_{i,0} \\ \sigma, \tau \in K_{top} \text{ and } (\sigma, \tau) \in R_{i,i} \\ \tau \in K_{top} \text{ and } (\sigma, \tau) \in (R_{0,i})^* \end{cases}$

- Compact: it explicitly stores just a fraction of the entities of a simplicial complex
- Not all the relations between simplices are immediately available
The simplicial complex K is encoded by storing its 1-skeleton (i.e. the graph consisting of the 0- and the 1-simplices) and a map returning, for each 1-simplex σ, the blockers of K containing σ, where:

- A simplex τ is a blocker if τ does not belong to K but all its faces do.

Designed for flag complexes (e.g. VR complexes) and edge contraction

Too specific: inefficient in any other task
Top-based representations look like promising data structures for encoding a simplicial complex K.

But, how to…

1. Store information associated to each simplex of K (e.g. labels, gradient, …)?

2. Efficiently perform operators having explicitly stored a fraction of the entities of K?
Top-based representations look like promising data structures for encoding a simplicial complex K.

But, how to…

1. **Store information associated to each simplex of K (e.g. labels, gradient, …)?**

 Attach information to the top simplices only

 $$
 \begin{array}{cccc}
 v_0 & v_1 & v_2 & v_0v_1v_2 \\
 0 & 0 & 1 & 1 \\
 \end{array}
 $$

2. **Efficiently perform operators having explicitly stored a fraction of the entities of K?**
Possible Issues in Top-based Representations

Top-based representations look like promising data structures for encoding a simplicial complex K.

But, how to…

1. **Store information associated to each simplex of K (e.g. labels, gradient, …)?**

 Attach information to the top simplices only

2. **Efficiently perform operators having explicitly stored a fraction of the entities of K?**

 Re-define the algorithms performing the operators trying to extract the lowest possible amount of non-explicitly stored entities
Comparisons

Top-based vs Simplex-based

| Dataset | d | $|\Sigma_0| \quad |\Sigma_{top}| \quad |\Sigma|$ | Storage Cost |
|--------------|-----|-----------------|-----------------|-------|-------------|
| | | | | | IA^* | IG | ST |
| DTI-scan | 3 | 0.9M | 5.5M | 24M | 0.97 | 11.9 | 2.4 |
| VisMale | 3 | 4.6M | 26M | 118M | 4.7 | - | 9.7 |
| Ackley4 | 4 | 1.5M | 32M | 204M | 6.8 | - | 12.8 |
| Amazon01 | 6 | 0.2M | 0.4M | 2.2M | 0.12 | 1.6 | 0.3 |
| Amazon02 | 7 | 0.4M | 1.0M | 18.4M | 0.28 | 9.8 | 1.5 |
| Roadnet | 3 | 1.9M | 2.5M | 4.8M | 0.8 | 3.3 | 1.0 |
| Sphere-1.0 | 16 | 100 | 224 | 0.6M | 0.003 | 0.9 | 0.04 |
| Sphere-1.2 | 21 | 100 | 285 | 26M | 0.0032 | - | 1.5 |
| Sphere-1.3 | 23 | 100 | 382 | 197M | 0.0034 | - | 11.01 |
Comparisons

Top-based vs Simplex-based

- **PROB.5D (607 MB)**: IA* = 1.98, Simplex tree = 11.7, Stellar tree = 1.1
- **PROB.7D (7.9 GB)**: IA* = 2, Simplex tree = 19.62, Stellar tree = 1.01
- **PROB.40D (2.6 GB)**: IA* = 2, Simplex tree = 5.54, Stellar tree = 1
- **VISMALE7D (134 MB)**: IA* = 2.13, Simplex tree = 73.88, Stellar tree = 1.06
- **FOOT10D (2.1 GB)**: IA* = 2, Simplex tree = 180, Stellar tree = 1.05
- **LUCY34D (2.0 GB)**: IA* = 2.05, Simplex tree = 4,925.9, Stellar tree = 1.05

Legend:
- IA*: IA-based
- Simplex tree: Simplex-based tree
- Stellar tree: Stellar-based tree
Comparisons

Top-based vs Operator-driven

<table>
<thead>
<tr>
<th>Data</th>
<th>ω</th>
<th>Contr. Edges</th>
<th>Timings</th>
<th>Memory Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHICAGO</td>
<td>weak</td>
<td>9.15h</td>
<td>2.27m</td>
<td>9.19h</td>
</tr>
<tr>
<td></td>
<td>top</td>
<td>6.38K</td>
<td>0.01s</td>
<td>0.02s</td>
</tr>
<tr>
<td></td>
<td>Skel.</td>
<td>0.00s</td>
<td>0.15s</td>
<td>0.15s</td>
</tr>
<tr>
<td></td>
<td>weak</td>
<td>out-of-memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>top</td>
<td>7.99K</td>
<td>0.04s</td>
<td>0.06s</td>
</tr>
<tr>
<td></td>
<td>Skel.</td>
<td>0.00s</td>
<td>0.71s</td>
<td>0.71s</td>
</tr>
<tr>
<td>ATHENS</td>
<td>weak</td>
<td>out-of-memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>top</td>
<td>27.9K</td>
<td>0.08s</td>
<td>0.11s</td>
</tr>
<tr>
<td></td>
<td>Skel.</td>
<td>0.00s</td>
<td>0.74s</td>
<td>0.75s</td>
</tr>
<tr>
<td></td>
<td>weak</td>
<td>out-of-memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>top</td>
<td>31.2K</td>
<td>0.40s</td>
<td>0.49s</td>
</tr>
<tr>
<td></td>
<td>Skel.</td>
<td>0.01s</td>
<td>7.73s</td>
<td>7.74s</td>
</tr>
<tr>
<td>VISAILE</td>
<td>weak</td>
<td>34.3m</td>
<td>1.28m</td>
<td>40.4m</td>
</tr>
<tr>
<td></td>
<td>top</td>
<td>4.23M</td>
<td>4.34m</td>
<td>0.89m</td>
</tr>
<tr>
<td></td>
<td>Skel.</td>
<td>0.76m</td>
<td>3.34h</td>
<td>3.35h</td>
</tr>
<tr>
<td>FOOT</td>
<td>weak</td>
<td>killed after 25 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>top</td>
<td>4.69M</td>
<td>2.89h</td>
<td>26.0m</td>
</tr>
<tr>
<td></td>
<td>Skel.</td>
<td>killed after 25 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUCY</td>
<td>weak</td>
<td>killed after 25 hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>top</td>
<td>14.0M</td>
<td>11.9m</td>
<td>14.8m</td>
</tr>
<tr>
<td></td>
<td>Skel.</td>
<td>23.19s</td>
<td>14.6h</td>
<td>14.6h</td>
</tr>
</tbody>
</table>
In Summary

We have briefly overviewed the **most common data structures** proposed in the literature.

Future Directions:

- **Express** the most frequently adopted operators *in terms of top simplices*

- Face the bottleneck concerning the **construction of a simplicial complex from a dataset** (maybe proposing an approximated construction?)

- Investigate with your help the connections between simplicial complexes (and the data structures to store them) and **itemsets in association rule learning**
Thank you!
Main References:

- **Simplex-based Representations:**
 - Boissonnat, Maria. *The Simplex Tree: an Efficient Data Structure for General Simplicial Complexes.* In Algorithmica, 2014

- **Top-based Representations:**

- **Operator-driven Representations:**

- **Comparisons:**
 - Fugacci, Iuricich, De Floriani. *Computing Discrete Morse Complexes from Simplicial Complexes.* In Graphical Models, 2019