
THE EVOLUTION OF HIGH-PERFORMANCE SYSTEMS:  
FROM HPC TO BIG DATA TO DEEP LEARNING

Marco Aldinucci

Computer Science Department, University of Torino

Head of Parallel Computing group, coordinator of HPC4AI,

national delegate at EuroHPC JU

DATA LOSES ITS OPERATIONAL VALUE IN A SHORT TIME

• Partition the atmosfere 1x1x1 Km up to 10 Km
altitude (10 cells). Earth: ~ 5 x 10^9 cells

• Let us supposed 1 cell needs 200 Floating
Point Ops. I.e. 10^12 Ops for each step

• A 7-days forecast with 1 minute time step on a
10GFLOPS CPU needs 10^7 secs, i.e 10 days
• Es. Intel Core i7-7500U

• To compute it in 5 mins you need a 35 TFLOPS
CPU
• 3500x (fastest CPU today, ~200GFLOPS)

�2

100X100M CONTINUOUS WHETHER FORECAST, WHAT FOR? �3

PROGRAMMING MODEL: STENCIL

�4

PROGRAMMING MODELS AND APPLICATIONS
HPC

• Locally synchronous data parallelism
• Stencil

• Scalable and well-understood

• Simulations, finite elements, AMR, HPLinpack, …

• Physics, chemistry, engineering, …

• Globally synchronous data parallelism
• BSP, PGAS, …

• Barrier = not scalable

• Stream & task parallel
• Compositional = good, but not scalable

M. Aldinucci et al. “A Parallel Pattern for Iterative Stencil + Reduce,” Journal of Supercomputing, 2018

Ghost cells or halo-swap

�6

HPC APPLICATIONS
L’OMA SEMPER FAIT PAREI… (SARA PÀ PERICULUS)

Number of applications using a given
programming paradigm in the set of 30
candidate exascale applications of the USA
DoE Exascale Computing Project (ECP).

�7

PLATFORMS

• Multi-level clusters
• Multicore + GPUs

• Data movement
• Optimised for CPU-bound applications, I/O-bound applications problematic

• High-speed network (e.g. fat-tree IB 100-400 Gb/s)
• Efficient synchronisation is key for scalability

• Managed with job queue (PBS, SLURM)
• Sometime bare metal virtualisation: singularity, kubernetes, …Occam@UNITO

extreme scale system

islandisland island

cabinet

module module module module module module module module

node node node node node node

core core core HW-acc GPGPU core core core HW-acc GPGPU

cabinet cabinet cabinet cabinet cabinet

island

node node node node node node

�8

OCCAM@UNITO: CALENDAR + DOCKER

• Advantages: Interactive, virtual farms + queue, user-defined configuration

• More importantly… we designed it!

Light nodes

FAT nodes

GPU nodes

+12

12 hours

Docker images -1 -4

�9

�10

EUROHPC
EU PROCESSOR + EU EXA-MACHINE

Pre-exascale general system specifications

• Applicants must describe how the following
general system specifications will be met, for
both the EuroHPC supercomputer and the site.

• The hosting entity will host a supercomputer
with the following requirements:

• A capability computing system, with an aggregated
performance level capable of executing at least 200
Petaflops (sustained performance measured using
linpack benchmark)

• Covering the needs (including substantial performance
increase) of a wide range of key/grand challenge
applications that demonstrably require large systems that
are precursors of exascale capability computing.

• A total power consumption of no more than 15 MW for
the hosting of the EuroHPC supercomputer

�11

“THE MOST DAMAGING PHRASE IN THE LANGUAGE IS L’OMA SEMPER FAIT PAREI”  
(WE’VE ALWAYS DONE IT THIS WAY!)

The grandma
of Cobol

�12

PARALLEL COMPUTING GROUP FUNDING PERSPECTIVE (ALPHA@UNITO)

• ParaPhrase (EC-STREP, 7th FP): Parallel Patterns for Adaptive Heterogeneous Multicore Systems (2011, 42 months, total cost 4.2M €).

• BETTY (EC-COST Action1201): Behavioural Types for Reliable Large-Scale Software Systems. (2012, 48 months).

• CINA (MIUR PRIN): Compositionality, Interaction, Negotiation, Autonomicity for the future ICT society (2013, 36 months).

• REPARA (EC-STREP, 7th FP): Reengineering and Enabling Performance And poweR of Applications (2013, 36 months, total cost 3.5M €).

• NESUS (EC-COST Action IC1305): Network for Sustainable Ultrascale Computing (2014, 48 months, total cost 400K).

• C3S: Competence Center on Scientific Computing (2014, Compagnia di San Paolo, founding 900K €).

• Rephrase (EC-RIA, H2020, ICT-2014-1): Refactoring Parallel Heterogeneous Resource-Aware Applications – a Software Engineering Approach (2015,
36 months, total cost 3.5M €).

• cHiPSet (EC-COST Action IC1406): High-Performance Modelling and Simulation for Big Data Applications (2015, 48 months, total cost 500K).

• OptiBike (EU I4MS): Robust Lightweight Composite Bicycle design and optimization, an experiment of EU i4MS Fortissimo2 project (2017, 24 months,
total cost 230K €).

• Toreador (EC-RIA, H2020, ICT-2015-16): TrustwOrthy model-awaRE Analytics Data platfORm (2015, 36 months, total cost 6.2M €).

• HPC4AI (Regione Piemonte, INFRA_P): Turin’s centre in High-Performance Computing for Artificial Intelligence (2018, 24 months, total cost 4.5M €).

• DeepHealth (EC-IA, H2020, ICT-2018-11): Deep-Learning and HPC to Boost Biomedical Applications for Health (2019, 36 months, total cost 12.8M€).

• MnemoComputing (Compagnia di SanPaolo): Components for Processing In Memory (2019, 24 months, total cost 70K€)

• PDEvolve Deep Learning + HPC (ICT-11-b - under evaluation)

• ExaTrain Deep Learning + HPC (Marie Curie - under evaluation)

Parallel computing
HPC

2011-

BigData
Cloud

2015-

Machine Learning
Cloud

2018-

�13

REINFORCED DEEP LEARNING

�14

FLOPS

Min training time
AlphaZero ~36

years

Min training time
AlphaZero ~684

years

Min training time

AlphaZero ~1 hour

▸ NVIDIA V100

▸ 32 bit ~15TFLOPS

▸ 5120 cores + 640 tensor
cores

▸ 300W, cost: ~7K€

▸ Intel E5-2699v4

▸ 64 bit ~200GFLOPS

▸ 22 cores HT + AVX2

▸ 150W, cost: ~4K€

▸ Marconi

▸ 64 bit ~10PFLOPS

▸ 350,000 KNL 68 cores

▸ 3MW, cost: 30M€

�15

THE NEW TURING GPU
LESS THAN 2500€

�16

THE NEW TURING GPU
LESS THAN 2500€

�16

FROM FP32 TO FP16 TO INT8, AS WELL AS INT4

�17

Ternary Neural Networks for Resource-Efficient AI
Applications

Hande Alemdar∗, Vincent Leroy∗, Adrien Prost-Boucle†, Frédéric Pétrot†
∗Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France

†Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA, F-38000 Grenoble, France

Email: name.surname@univ-grenoble-alpes.fr

Abstract—The computation and storage requirements for Deep
Neural Networks (DNNs) are usually high. This issue limits their
deployability on ubiquitous computing devices such as smart
phones, wearables and autonomous drones. In this paper, we
propose ternary neural networks (TNNs) in order to make deep
learning more resource-efficient. We train these TNNs using a
teacher-student approach based on a novel, layer-wise greedy
methodology. Thanks to our two-stage training procedure, the
teacher network is still able to use state-of-the-art methods such
as dropout and batch normalization to increase accuracy and
reduce training time. Using only ternary weights and activations,
the student ternary network learns to mimic the behavior of its
teacher network without using any multiplication. Unlike its {-1,1}
binary counterparts, a ternary neural network inherently prunes
the smaller weights by setting them to zero during training. This
makes them sparser and thus more energy-efficient. We design a
purpose-built hardware architecture for TNNs and implement it
on FPGA and ASIC. We evaluate TNNs on several benchmark
datasets and demonstrate up to 3.1× better energy efficiency with
respect to the state of the art while also improving accuracy.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved state-of-the-
art results on a wide range of AI tasks including computer
vision [1], speech recognition [2] and natural language pro-
cessing [3]. As DNNs become more complex, their number
of layers, number of weights, and computational cost increase.
While DNNs are generally trained on powerful servers with the
support of GPUs, they can be used for classification tasks on a
variety of hardware. However, as the networks get bigger, their
deployability on autonomous mobile devices such as drones
and self-driving cars and mobile phones diminishes due to
the extreme hardware resource requirements imposed by high
number of synaptic weights and floating point multiplications.
Our goal in this paper is to obtain DNNs that are able to
classify at a high throughput on low-power devices without
compromising too much accuracy.

In recent years, two main directions of research have been ex-
plored to reduce the cost of DNNs classifications. The first one
preserves the floating point precision of DNNs, but drastically
increases sparsity and weights sharing for compression [4], [5].
This has the advantage of significantly diminishing memory
and power consumption while preserving accuracy. However,
the power savings are limited by the need for floating-point
operation. The second direction reduces the need for floating-
point operations using weight discretization [6], [7], [8], [9],
with extreme cases such as binary neural networks completely

eliminating the need for multiplications [10], [11], [12]. The
main drawback of these approaches is a significant degradation
in the classification accuracy in return for a limited gain in
resource efficiency.

This paper introduces ternary neural networks (TNNs) to
address these issues and makes the following contributions:

• We propose a teacher-student approach for obtaining
Ternary NNs with weights and activations constrained to
{−1, 0, 1}. The teacher network is trained with stochastic
firing using back-propagation, and can benefit from all
techniques that exist in the literature such as dropout [13],
batch normalization [14], and convolutions, The student
network has the same architecture and, for each neuron,
mimics the behavior of the equivalent neuron in the teacher
network without using any multiplications,

• We design a specialized hardware that is able to process
TNNs at up to 2.7× better throughput, 3.1× better energy
efficiency and 635× better area efficiency than state-of-
the-art and with competitive accuracy,

• We make the training code publicly available 1 and provide
a demonstration hardware design for TNNs using FPGA 2.

The rest of this paper is organized as follows. In the following
section, we introduce our procedure for training the ternary
NNs detailing our use of teacher-student paradigm to eliminate
the need for multiplications altogether during test time, while
still benefiting all state-of-the-art techniques such as batch
normalization and dropout during training. In Section III,
we provide a survey of related works that we compare our
performance with. We present our experimental evaluation on
ternarization and the classification performance on five different
benchmark datasets in Section IV. In Section V, we describe
our purpose-built hardware that is able to handle both fully
connected multi-layer perceptrons (MLPs) and convolutional
NNs (CNNs) with a high throughput and a low-energy budget.
Finally, we conclude with a discussion and future studies in
Section VI.

II. TRAINING TERNARY NEURAL NETWORKS

We use a two-stage teacher-student approach for obtaining
TNNs. First, we train the teacher network with stochastically
firing ternary neurons. Then, we let the student network learn

1https://github.com/slide-lig/tnn-train
2http://tima.imag.fr/sls/research-projects/tnn-fpga-implementation/

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 2547

shows the distribution of the ratio of neurons that are ternarized
exhaustively with different ε, together with the performance
gaps on training and test datasets. The optimal trade-off is
achieved with ε = 0.95. Exhaustive search is used for only
20% of the neurons, and the expected value of accuracy gaps
is practically 0. For the largest layer with 1000 neurons, the
ternarization operations take 2min and 63min for dichotomic
and exhaustive search, respectively, on a 40-core Intel(R)
Xeon(R) CPU E5-2650 v3 @ 2.30GHz server with 128 GB
RAM. For the output layer, the ternarization time is reduced
to 21min with exhaustive search.

B. Classification Performance

The classification performance in terms of error rate (%)
on several benchmark datasets is provided in Table IV. We
compare our results to several related methods that we described
in the previous section. We make a distinction between the
fully discretized methods and the partially discretized ones
because only in the latter, the resulting network is completely
discrete and requires no floating points and no multiplications,
providing maximum energy efficiency.

Since the benchmark datasets we use are the most studied
ones, there are several known techniques and tricks that give
performance boosts. In order to eliminate unfair comparison
among methods, we follow the majority’s lead and we do
not use any data augmentation in our experiments. Moreover,
using an ensemble of classifiers is a common technique for
performance boosting in almost all classifiers and is not unique
to neural networks [25]. For that reason, we do not use an
ensemble of networks and we cite the compatible results in
other related works.

MNIST is by far the most studied dataset in deep learning
literature. The state-of-the-art is already down to 21 erroneous
classifications (0.21%) which is extremely difficult to obtain
without extensive data augmentation. TNN’s error rate on
MNIST is 1.67% with a single 3-layer MLP with 750 neurons
in each layer. Bitwise NNs [10] with 1024 neurons in 3
layers achieves a slightly better performance. TNN with an
architecture that has similar size to Bitwise NN is worse due to
over-fitting. Since TNN selects a different sparsity level for each
neuron, it can perform better on smaller networks, and larger
networks cause over-fitting on MNIST. Bitwise NN’s global
sparsity parameter has a better regularization effect on MNIST

TABLE IV
CLASSIFICATION PERFORMANCE - ERROR RATES (%)

MNIST CIFAR10 SVHN GTRSB CIFAR100

Fully Discretized
TNN (This Work) 1.67 12.11 2.73 0.98 48.40
TrueNorth [11], [12] 7.30 16.59 3.34 3.50 44.36
Bitwise NN [10] 1.33

Partially Discretized
Binarized NN [6] 0.96 10.15 2.53
BC [15] 1.29 9.90 2.30
TC [9] 1.15 12.01 2.42
TWN [8] 0.65 7.44
EBP [24] 2.20
XNOR-Net [16] 9.88
DoReFa-Net [7] 2.40

for relatively bigger networks. Its performance with smaller
networks or on other datasets is unknown. TrueNorth [11] with
a single network achieves only 7.30% error rate. To alleviate
the limitations of single network performance, a committee of
networks can be used, reducing the error rate to 0.58% with
64 networks.

The error rate of TNN on CIFAR10 is 12.11%. When
compared to partially discretized alternatives, a fully discretized
TNN is obtained at the cost a few points in the accuracy and
exceeds the performance of TrueNorth by more than 4%. On
SVHN, it has a similar achievement with lower margins. For
CIFAR100, on the other hand, it does not perform better than
TrueNorth. Given the relatively lower number of related works
that report results on CIFAR100 as opposed to CIFAR10, we
can conclude that this is a more challenging dataset for resource-
efficient deep learning with a lot of room for improvement.
TNN has the most remarkable performance on GTSRB dataset.
With 0.98% error rate, CNN-Big model exceeds the human
performance which is at 1.16%.

Partially discretized approaches use real-valued input which
contains more information. Therefore, it is expected that they
are able to get higher classification accuracy. When compared to
partially discretized studies, TNNs only lose a small percentage
of accuracy and in return they provide better energy efficiency.
Next, we describe the unique hardware design for TNNS and
investigate to which extent TNNs are area and energy efficient.

V. PURPOSE-BUILT HARDWARE FOR TNN

We designed a hardware architecture for TNNs that is
optimized for ternary neuron weights and activation values
{−1, 0,+1}. In this section we first describe the purpose-built
hardware we designed and evaluate its performance in terms
of latency, throughput and energy and area efficiency.

A. Hardware Architecture

Figure 3 outlines the hardware architecture of a fully-
connected layer in a multi-layer NN. The design forms a
pipeline that corresponds to the sequence of NN processing
steps. For efficiency reasons, the number of layers and the
maximum layer dimensions (input size and number of neurons)
are decided at synthesis time. For a given NN architecture, the
design is still user-programmable: each NN layer contains a
memory that can be programmed at run-time with neuron
weights or output ternarization thresholds blo and bhi . As
seen in the previous experiments of Section IV, a given NN
architecture can be reused for different datasets with success.

Ternary values are represented with 2 bits using usual two’s
complement encoding. That way, the compute part of each
neuron is reduced to just one integer adder/subtractor and one

neurons

RAM

W

Layer n
Step

Activation
n

neuronsRAM

W

Output Layer

RAM

bhi ,blo >

<

2 2

22

2

Step
Activation

n - 1

RAM

bhi ,blo >

<

2

Fig. 3. Hardware implementation scheme of ternary neural network

2552

TABLE I
TERNARY NEURAL NETWORK DEFINITIONS FOR A SINGLE NEURON i

Teacher network Student Network

Weights Wi = [wj], wj ∈ R Wi = [wj],wj ∈ {−1, 0, 1}
Bias bi ∈ R bi

lo ∈ Z

bi
hi ∈ Z

Transfer yi = Wᵀ

i x + bi yi = Wi
ᵀx

Function

Act. Fun nt
i =

⎧

⎪

⎨

⎪

⎩

−1 with prob. −ρ if ρ < 0

1 with prob. ρ if ρ > 0

0 otherwise

ns
i =

⎧

⎪

⎨

⎪

⎩

−1 if yi < bi
lo

1 if yi > bi
hi

0 otherwise

where ρ = tanh(yi), ρ ∈ (−1, 1)

how to imitate the teacher’s behavior using a layer-wise greedy
algorithm. Both the teacher and the student networks have
the same architecture. The student network’s weights are
the ternarized version of the teacher network’s weights. The
student network uses a step function with two thresholds as
the activation function. In Table I, we provide our notations
and descriptions. In order to emphasize the difference, we
denote the discrete valued parameters and inputs with a bold
font. Real-valued parameters are denoted by normal font. We
use [.] to denote a matrix or a vector. We use subscripts for
enumeration purposes and superscripts for differentiation. nt

i

is defined as the output of neuron i in teacher network and ns
i

is the output of neuron i in the student network. We detail the
two stages in the following subsections.

A. The Teacher Network

The teacher network can have any architecture with any
number of neurons, and can be trained using any of the standard
training algorithms. We train the teacher network with a single
constraint only: it has stochastically firing ternary neurons with
output values of −1, 0, or 1. The benefit of this approach is that
we can use any technique that already exists for efficient NN
training, such as batch normalization [14], dropout [13], etc. In
order to have a ternary output for teacher neuron i denoted as
nt
i , we add a stochastic firing step after the activation step. For

achieving this stochastically, we use tanh (hyperbolic tangent),
hard tanh, or soft-sign as the activation function of the teacher
network so that the neuron output has (−1, 1) range before
ternarization. We use this range to determine the ternary output
of the neuron as described in Table I. Although we do not
require any restrictions for the weights of the teacher network,
several studies showed that it has a regularization effect and
reduces over-fitting [8], [9]. Our approach is compatible with
such a regularization technique as well.

B. The Student Network

After the teacher network is trained, we begin the training
of the student network. The goal of the student network is to
predict the output of the teacher real-valued network. Since
we use the same architecture for both networks, there is a
one-to-one correspondence between the neurons of both. Each
student neuron denoted as ns

i learns to mimic the behavior
of the corresponding teacher neuron nt

i individually and
independently from the other neurons. In order to achieve
this, a student neuron uses the corresponding teacher neuron’s

t
lo

t
hi

0

50

100

150

200
W

-1 -0.5 0 0.5 1
0

500

1000

1500

2000
tanh(WT x + b)

-1 0 1
0

1

2

3

4
#10

4 nt

-1 0 1
0

200

400

600

800

1000
W

b
lo

b
hi

0

500

1000

1500

2000
y!;y0;y+

-1 0 1
0

1

2

3

4
#10

4 ns

Fig. 1. Example ternarization for a single neuron

weights as a guide to determine its own ternary weights using
two thresholds tloi (for the lower threshold) and thii (for the
higher one) on the teacher neuron’s weights. This step is called
the weight ternarization. In order to have a ternary neuron
output, we have a step activation function of two thresholds
bi

lo and bi
hi . The output ternarization step determines these.

Figure 1 depicts the ternarization procedure for a sample
neuron. In the top row, we plot the distributions of the weights,
activations and ternary output of a sample neuron in the teacher
network respectively. The student neuron’s weight distribution
that is determined by tloi and thii is plotted below the teacher’s
weight distribution. We use the transfer function output of
the student neuron, grouped according to the teacher neuron’s
output on the same input, to determine the thresholds for
the step activation function. In this way, the resulting output
distribution for both the teacher and the student neurons are
similar. In the following subsections we detail each step.

1) Output Ternarization: The student network uses a two-
thresholded step activation function to have ternary output
as described in Table I. Output ternarization finds the step
activation function’s thresholds bi

lo and bi
hi , for a ternary

neuron i, for a given set of ternary weights W. In order to
achieve this, we compute three different transfer function output
distributions for the student neuron, using the teacher neuron’s
ternary output value on the same input. We use y− to denote
the set of transfer function outputs of the student neuron for
which the teacher neuron’s output value is −1. y0 and y+ are
defined in the same way for teacher neuron output values 0
and 1, respectively.

We use a simple classifier to find the boundaries between
these three clusters of student neuron transfer function outputs,
and use the boundaries as the two thresholds bi

lo and bi
hi of

the step activation function. The classification is done using a
linear discriminant on the kernel density estimates of the three
distributions. The discriminant between y+ and y0 is selected
as the bi

hi , and the discriminant between y− and y0 gives
the bi

lo .

2) Weight Ternarization: During weight ternarization, the
order and the sign of the teacher network’s weights are
preserved. We ternarize the weights of the ith neuron of the
teacher network using two thresholds tloi and thii such that
min(Wi) ! tloi ! 0 and 0 ! thii ! max(Wi). The weights
for the ith student neuron are obtained by weight ternarization

2548

�18

PROGRAMMING MODELS AND APPLICATIONS
DEEP LEARNING

• Training
• Compute: very demanding

• Network: asynchronous, associative, commutative → Not demanding

• Precision requirement: single or even less

• Inference
• Compute: not demanding quantisable

• Embarrassingly parallel → Not demanding

• Precision requirement: quantisable up to 1 bit with decent performances

�19

C3S SmartData

POLITOUNITO
(coord)

Collegio
Carlo Alberto

Universities
and
Departments

Data Centers

Hardware
green

cooling
specialised

islands

Technological
Partner

Città Salute
e Scienza

Fondazione
ISI

Supported
 by

Comau Prima Industrie

TopIX

GARR INFN-TO ISMB

Exemplar

IREN

ReplyBlueReply

INRiM

TIM

AizoOn

NVidiaIBM

O.R.S.

E4Engineering

IIT
Genova

PdF HPC

Consoft

CSP

FCA

Loquendo

TorinoWireless

GARR cloud “Piemonte zone”
Federated cloud islands

DIPINF DIPES

DIPGIU

C3S ICxT

MEDHIUM DAUIN

DET HPC
@PoliTO

SmartData
@PoliTO

 specialised
islands

(non federated)

green
cooling

LabInf

Arm

Reale Mutua

Celi

Leonardo

NetValue

Intesa SanPaolo

General Motors

Cisco

DIPMAT

Banca Sella SITI

DIPFIL

Human
 Technopole

AI-on-demand platform

http://www.hpc4ai.it

Facts
• INFRA-P call Nov. 2017

• Ranked 1st on ~30

submitted projects

• Kick-off mid apr 2018

• 4.5M€ funding

• 2 partners

• 8 associated partners

• Coord. M. Aldinucci

• Many industrial

stakeholders
�20

Users Kind of service Services Artifacts
Domain experts with no skills on ML and
BDA.

Training set not required. Off-the-shelf
algorithms/networks.

Service-as-a-
Service (SaaS)

SaaS for ML and BDA
designed within HPC4AI
partners

Market place for ML and BDA
services: Dashboards, trained
models in several domains (NLP,
Vision, …)

Domain experts skilled on ML and BDA.
Not expert in parallel computing.

New networks or pipelines; training set
required.

Platform-as-a-
Service (PaaS)

PaaS solutions for ML and
BDA directly designed within
HPC4AI or companion
projects

Market place of VMs and
Platforms realising software
stacks for ML and BDA. Solutions
for data ingestion, data lake, etc.

Researchers, cloud engineering, ML and BDA
framework designers, cloud engineers, stack
and automation designers.

1) Infrastructure-
as-a-Service (IaaS)

2) Metal-as-a-
Service (IaaS)

1) GARR/other cloud able to
support federation

2) Job scheduler for HPC
resources

1) Openstack, docker, VM, object
storage, file storage, kubernetes,
etc.

2) Alternative cloud, job queue,
Big Data Stack (Spark, …).

Researchers, run-time designers. Hardware Bare Metal Multicore, GPU, storage, network,
switch, UPS, cooling, etc.

�21

IaaS PaaS

�22

IaaS PaaS

�22

EXAMPLE PAAS ON BARE METAL: KUBERNETES-AS-A-SERVICE

M. Aldinucci et al. “HPC4AI, an AI-on-demand federated platform endeavour,” in ACM Computing Frontiers, Ischia, Italy, 2018.�23

EXAMPLE PAAS ON VMS: BIGDATA-AS-A-SERVICE

M. Aldinucci et al. “HPC4AI, an AI-on-demand federated platform endeavour,” in ACM Computing Frontiers, Ischia, Italy, 2018.�24

WHAT’S NEXT?

�25

FOLLOW-UP PROJECT (2018_ICT-11-A EU IA, 13M€) 
DEEPHEALTH: DEEP-LEARNING AND HPC TO BOOST BIOMEDICAL APPLICATIONS FOR HEALTH

• 18 Parterns: Everis,
Siveco, Wings, Philiphs,
SIVECO, IBM, Thales,
CEA, Treelogic, EPFL,
UPV, UNITO, UNIMORE,
…

• Design and develop:

• European Library for Distributed

Deep Learning for health

• AI-on-demand cloud platforms

(HPC4AI, …)

�26

FROM HPC TO BIGDATA TO DEEP LEARNING

• HPC
• Send/recv, batch, CPU intensive
• Programmer should have the direct knowledge of all processes and all communications

• Exascale HPC
• Data movements rather than compute power
• Beyond locally synchronous data parallelism? Tasks?

• BigData (more abstract)
• Mostly streams & I/O: intensive, interactive
• Virtualised, cloud stack, Platform/Service-as-a-Service,  

service composition
• O(n) algoritms - no more!

• Deep Learning (much more abstract)
• Naturally asynchronous, permissive, low precision
• Both batch (training) and stream (inference)

�27

PROBLEMS SOLVED (PROGRAMMING MODEL)

• HPC: large-scale locally synchronous (stencil)
• Low-level: MPI

• High-level: open problem. Tasks?

• Big Data analytics
• MapReduce programming model (data flow run-time)

• Deep learning
• Training: API and architecture for scale-up well understood (GPU/Tensor)

• Inference: Quantisation + Prcessing-in-Memory new unfolding
M. Aldinucci, M. Drocco, C. Misale, and G. Tremblay, “Languages for Big
Data analysis,” in Encyclopedia of Big Data Technologies, Springer, 2019�28

OPEN PROBLEMS (PROGRAMMING MODEL)

• DL: Distributed training at scale
• Today: lock-step all-to-all weight exchange, i.e.

globally synchronous → not scalable Dataset Pa
rt
iti
on

s

Gradients

Gradients

Neighbors

P. Viviani, M. Drocco, D. Baccega, and M. Aldinucci, “Deep Learning at Scale,” PDP 2019 �29

OPEN PROBLEMS

• General methodology
• Most of the paper “observe” network x on data y with tuning z

• Distributed memory hierarchy
• Data movement prevails computation

• Privacy and data marketplace
• Multi-party computation

• Federated learning

• Inference: a complete programming ecosystem

�30

FUTURE HORIZONS (PROGRAMMING MODEL)

• Specialisation: accelerators are the key
• Deep Learning

• Quantum computing

• Neuromorphic

• Programming models: methodology is the key
• Should be simple and compositional as sequential or web services coding

• Performance is not the only issue: time-to-market, cost, correctness, …

�31

FUTURE HORIZONS
�32

