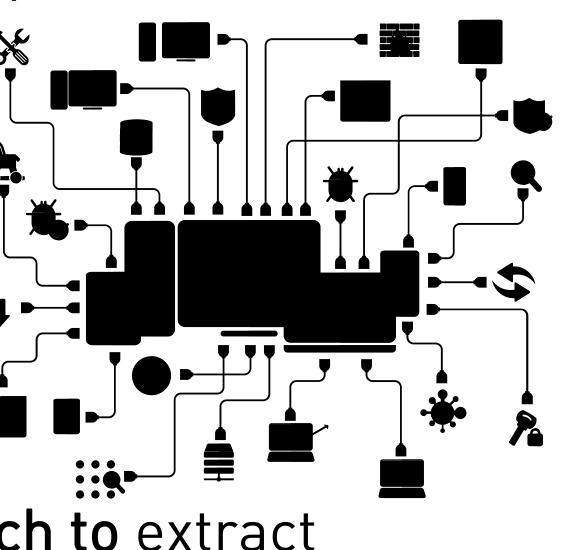


Generative adversarial networks for cybersecurity applications Francesca Soro (francesca.soro@polito.it)

Scuola di Dottorato 🗸 Doctoral School WHAT YOU ARE, TAKES YOU FAR

Supervisor: Prof. Marco Mellia Department of Electronics and Telecommunications Engineering

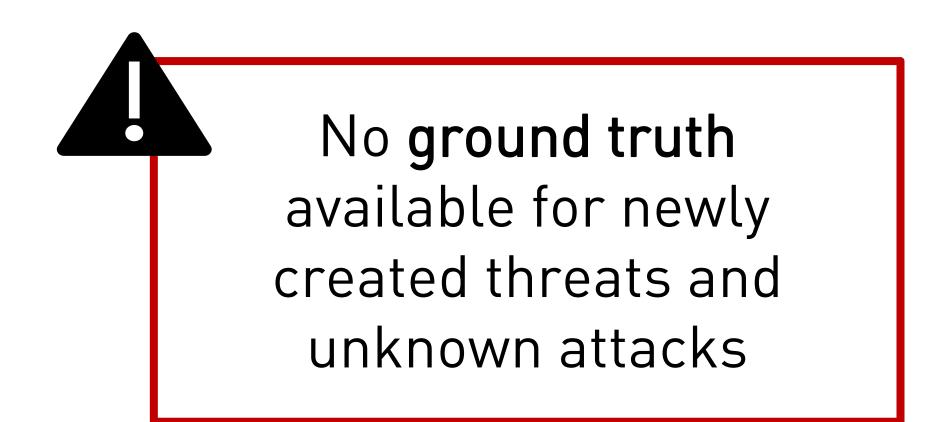
Motivation and background


- Nowadays **network traffic** scenario is experiencing a continuous growth in both volume and complexity
- New threats and anomalies are generated everyday, and the design of efficient

Addressed problem

- Machine learning algorithms are able to correctly classify well known attacks for which labeled datasets are available
- Existing solutions are **knowledge-based** systems adopting **signature-based** or **novelty**

cybersecurity systems is a problematic task

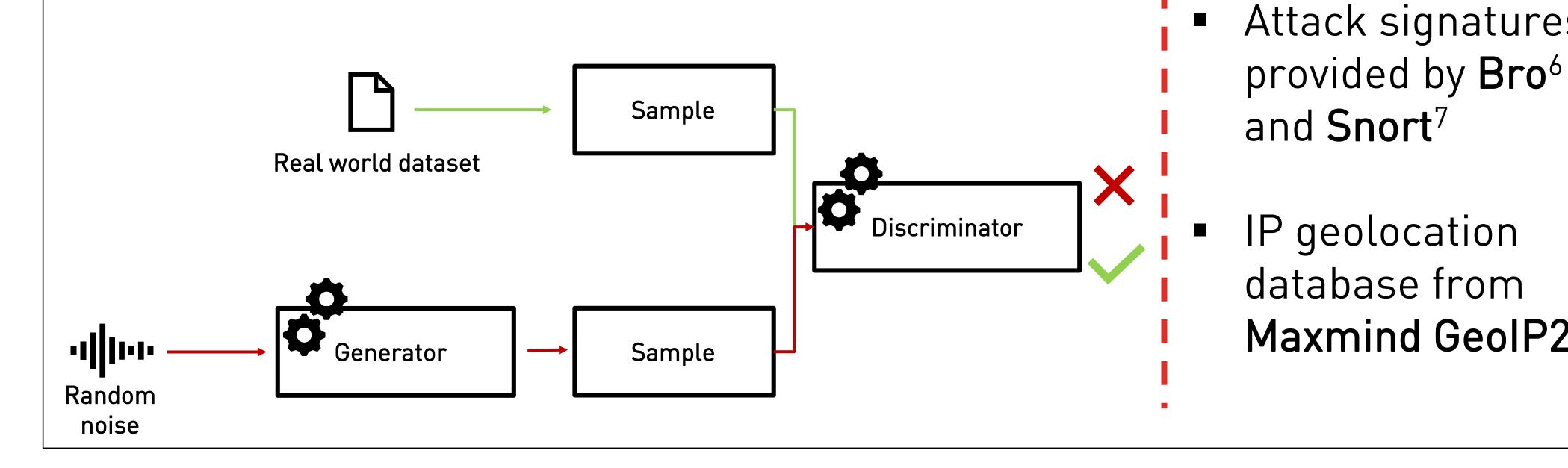

Automatic detection of zero-day attacks is almost impossible given the lack of training data

The current state of being calls for a **big-data approach to** extract relevant features and behaviours

detection²

Heuristics for recognizing network anomalies and threats are implemented³

Adopted methodology


Model

The adoption of Generative Adversarial Network¹ models can help in the generalization of a sample labeled dataset to an artificially richer one.

Dataset

Basic features extracted from darknet^{4,5} packet captures PROTOCOL **FEATURE**

		VERSION
2S 6	IP	SRC ADDRESS
		DST ADDRESS
		PROTOCOL
	UDP	SRC PORT
		DST PORT
		SRC PORT
_	TCP	DST PORT
2 ⁸		FLAGS

Results

Protocol distribution in darknet traffic (3 weeks):

TCP	UDP	ICMP	Others
94,3%	5,23%	0,34%	0,13%

Nature of darknet TCP traffic:

92,38%

SYN (Scan)	Backscattering	Misconfigurations
------------	----------------	-------------------

Conclusions and future work

- A simple yet systematic **traffic profiling** allows a deeper understanding of the nature of attacks
- Such output will lead to a deeper **threat signature** analysis, detecting correlations and co-

1,61% 0,34%

Top-3 countries per origin flow:

Russia	Seychelles	Netherlands
48,54%	12,88%	9,58%

occurrences among threats

Deriving an **association rule** among threats allows a first labelling of the traffic dataset, to be further generalized with GANs

References

- Goodfellow, Ian, et al. "Generative adversarial nets." *Advances in neural information processing systems*. 2014.
- A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, B. Stiller, "An Overview of IP Flow-Based Intrusion Detection," in IEEE Communications Surveys Tutorials.
- R. Fontugne, et al., "MAWILab: Combining Diverse Anomaly Detectors for Automated Anomaly Labeling and Performance Benchmarking", in ACM CoNEXT, 2010 3.
- Fachkha, Claude, et al. "Investigating the dark cyberspace: Profiling, threat-based analysis and correlation." Risk and Security of Internet and Systems (CRiSIS), 2012. 4.
- Moore, David, et al. Network telescopes: Technical report. Cooperative Association for Internet Data Analysis (CAIDA), 2004. 5.
- https://www.snort.org 6.
- https://www.bro.org/
- https://maxmind.com 8.