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Motivation and background

Addressed problem

The core of the problem we want to address is choosing a set of cycles so as
to span the homology group, while minimizing the total length of the basis,

Where μ(hi) is the length of the shortest representative of the homology class
hi.
We show the general structure of an algorithm as presented in [2],
which computes such a basis in polynomial time. Its outline is as follows:
• It computes an annotation of the edges. An annotation is a function !: # →
ℤ&', that can be linearly extended onto cycles, such that two cycle have the 
same annotation if and only if they are homologous. 

• By computing the annotation we can determine the dimension of H1, namely
g.

• The candidate set of cycles is generated by classical methods involving the 
spanning tree.

• The selection of each element of the homology basis is performed as
follows:

The shortest homology basis needs not be unique, as the graph may contain
several cycles of the same length. Therefore, the scaffold is computed summing
the incidence of basis cycles onto each edge. In case of a draw between
multiple cycles, their incidence is smeared over their different representatives, 
so the approach does not arbitrarily privilege a cycle over others. 
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The most essential description of the shape of a geometrical object is given 
by the holes that cut through it. The intuition underpinning TDA is to 
evaluate the relevance of local features by measuring their contribution to 
the global shape of a dataset;. 
The key intuition is as follows: if two points are connected by a lone arc, this 
represents a bridge in the dataset. But if three points are all mutually 
connected, then at this distance scale the resulting triangle blurs and can be 
confused for a single point. The large-scale holes that survive after this 
equivalence is taken are assumed to represent relevant features in the data.

Persistent homology works by sweeping the range of spatial scales, 
increasing the scale of interaction between points and computing the 
corresponding topological description. Then computing the persistence, i.e. 
sweeping the spatial range increasing connectivity, amounts to repeating the 
analysis over a filtration of nested simplicial complexes.

The homological scaffold [1] gives an aggregate summary of the persistence 
over the filtration: after we have fixed a representative for each independent 
homology cycle at each step of the filtration, we build it as a graph on the 
set of points such that each edge is weighted by the number of times it 
belongs to a homology cycle, across the filtration. This yields a measure of 
the relevance of every edge with respect to a global feature of the dataset. 
Our work is aimed at fixing a loophole in the previous pipeline: since 
homology cycles are equivalence classes, there is no obvious way to fix a 
representative. We have worked to compute at each step a localization of 
homology, i.e. the cycles of minimal total length which generate H1. 

Topological data analysis is a recent approach to the analysis of data, based on 
the intuition that the shape of data carries valuable information within itself. 
The general pipeline involves retrieving a points cloud jointly with a notion of 
similarity through pairwise distances and then studying its topological 
characteristics.
One of the main technique used in TDA is Persistent Homology, a theory that 
formalizes the concept of  “hole” in a manifold at different scale levels and 
different dimensions. By enriching geometric information arising from a 
distance or a filtering function one can obtain a sequence of nested subspaces 
of the shape, and henceforth apply persistent homology to observe the 
evolution of topological features at different scales.
The homological scaffold is a descriptor of the 1-skeleton of a shape made by 
the cycles that characterize in the best way the one-dimensional holes across 
the various levels of the filtration. 
We have developed a new approach to the scaffold by computing the minimal 
cycles across the various scales and their lifespan.
We will present some of the outcomes of the tests we performed with our 
tool on simulated and real data obtained from fMRI's of the human brain.

Fig 2. Filtration of simplicial complexes

To link triangles and edges, we use the boundary 
operator

Its main property is

The k-th homology group is defined as

Fig 1. Two homologous cycles.

procedure CycleBasis(G)
for i =1 t o g do :

Initialize Si = ei  
end
ExtendBasis(1,g)

end

procedure ExtendBasis(i,k)
if k = 1 then:

ShortestCycle(Si)
else:

ExtendBasis(i, ⎿k/2⏌)
Update(i,k)
ExtendBasis(i+⎿k/2⏌, ⎾k/2⏋)

end
endFig 4. Pseudocode sketch of the 

algorithm.

Fig 3. The highlighted cycles, output by the algorithm, 
form a shortest cycle basis for the first homology group.

Fig 5. Chord diagram of the homological 
scaffold over a 100-step filtration of the data. 
Connectivity is reduced from 3916 edges to 
just 191 while maintaining the essential 
structure of the non-trivial cycles. 
Color intensity of an arc reflects its weight in 
the scaffold.  Size and coloring of a node 
reflect its strength.

Fig 6. Embedding of the scaffold in a real-world 
human brain. Weights are in log scale for 
visualization.   

The shortest-basis homological scaffold algorithm was applied to a public 
dataset of neurological images, composed of time-series correlation of brain 
regions activity, measured through fMRI scans of hemoglobin deoxigenation. 
Data was provided by the Human Connectome Project. 
Distance matrices are obtained from a 1200-points time series on 89 parcels of 
the human brain, subset of the AAL brain atlas, analyzed on patients in resting 
state. The metric is expressed as an inverse of correlation values. The input 
matrix induces a virtually complete weighted graph on the 89 nodes. 
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