

# **A Reinforcement Learning Algorithm using Machine Generated Bounding Boxes** Annotations

Vittorio Mazzia

PhD Supervisors:



WHAT YOU ARE, TAKES YOU FAR

Marcello Chiaberge

Mario Roberto Casu

### Motivation and background

Training object class detectors typically requires large amount of data in which images are **manually annotated** with bounding boxes (bbox) for every instance of each class. This is particularly true for lightweight object class

# Materials and methods

#### **Dataset:** (OIDv4\_ToolKit)

| •                     |            | Apple | Grape    | Lemon   | Orange | Pear    |
|-----------------------|------------|-------|----------|---------|--------|---------|
| O<br>I<br>D<br>V<br>4 | Train      | 624   | 755      | 367     | 583    | 204     |
|                       | Validation | 24    | 44       | 41      | 25     | 4       |
|                       | Test       | 57    | 124      | 79      | 95     | 27      |
|                       | Videos     | 5′ 4″ | 12' 25'' | 34′ 3′′ | 7′9′′  | 9' 43'' |

detectors that progressively improve their mean average precision (*mAP*) increasing the number of examples available. The presented research suggests a metodology to exploit generated data from the field and a **collaboration** with multiple independent deep neural networks to obtain an increasingly more performing **embedded model** for the designated tasks.

#### Hardware:

- Tesla K80 (4992 Cuda Cores)
- **Networks:**
- Faster R-CNN (with ROI-align)
- SSD (with Focal-Loss (1.1))
  - $CE(p_t) = -\log(p_t)$ (1) $FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t)$ (1.1)

# Proposed Algorithm

A first architecture of the algorightm is shown in the graph at the bottom and it follows the

## Simulation Results



following steps:

- An initial dataset is used to train a two-stage Faster-RCNN, a Single Shot Multibox Detector (SSD) and a lightweight version of it.
- Data generated by the embedded network (frames & predictions) is sent to the cloud.
- Received images are elaborated by the ensemble network that generates new bbox.
- New data are merged with the old one and, through a re-training, novel weights of the embedded SSD are generated



### Conclusions and future work

The methodology presented is the first of its kind and preliminary results have proven a remarkable effectiveness of the overall system. However, the proposed research requirese further studies to improve the algorithm and asesess its limitations and drawbacks.

- Substitute the SVR block with a FC layer that exploits backbone extracted features
- Look for saturation value of *mAP*

